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Abstract—In this paper, we present a novel method of downlink
precoding for cell-free massive multiple-input multiple-output
(MIMO) systems using over-the-air (OTA) training. By drawing
analogies between a cell-free massive MIMO system and an
artificial neural network (ANN), we borrow the idea of back-
propagation algorithm to optimize the precoders and combiners
via OTA signal exchanges, without incurring channel state infor-
mation (CSI) estimation or CSI aggregation over some backhaul
lines. Numerical simulations show that our method outperforms
the state-of-the-art methods in average sum-rate, is robust against
pilot contamination, and has lower computational complexity.

Index Terms—Cell-free massive MIMO, distributed precoding,
quasi-neural network, back-propagation algorithm

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO)
[1], [2], as a recently emerged physical layer technology that
combines massive MIMO [3] and distributed access points
(APs), can significantly outperform traditional cellular massive
MIMO in some practical scenarios [4]. In a cell-free system,
the APs jointly serve all user equipments (UEs), with each
AP serving a cluster of UEs selected by some allocation
scheme [5]. To fully leverage the capacity of cell-free massive
MIMO, extensive researches have been devoted to cooperative
precoding and combing [6], [7], pilot assignment [8], power
allocation [4], and addressing practical hardware impairments
[9], [10].

Cooperative precoding and combining design in a cell-free
massive MIMO system can be achieved using a centralized
approach or a distributed one. A centralized approach, e.g.,
the centralized zero-forcing (ZF) precoding [11] and minimum
mean-square-error (MMSE) precoding [12], usually requires
local channel state information (CSI) and the optimized
precoder exchange via backhaul links between the central
processing unit (CPU) and the APs. Owing to the high di-
mensionality of aggregated channels, however, the centralized
methods involve computational complexity and the overhead
of CSI exchange overwhelmingly high. A distributed approach
only requires local CSI and limited or even no backhaul ex-
change for optimizing the precoders such as local ZF downlink
precoding [11], SLNR precoding [13] and MMSE precoding
[12]. But these algorithms underperform the centralized ones
because only partial information can be obtained at each AP.

This work was supported by National Natural Science Foundation of China
Grant No. 61771005.

The bi-directional training method uses over-the-air (OTA)
signaling to exchanges the CSI implicitly and to optimize the
precoders [6]. But it is sensitive to pilot contamination due
to the estimation of the cross-term information that contains
CSI.

This paper presents a distributed algorithm of cooperative
precoding and combing for downlink transmission in cell-
free massive MIMO systems. By introducing a power control
factor, we convert a non-convex maximum weighted sum-rate
(MWSR) problem with power constraint into an unconstrained
optimization problem. We then model a cell-free massive
MIMO system as a “quasi-neural network” [14] (Quasi-NN)
by drawing analogies between the cell-free massive MIMO
system and an artificial neural-network (ANN), based on
which we propose the distributed quasi-network precoding
(DQNP) algorithm. The DQNP algorithm requires no explicit
channel estimation nor backhaul exchange and it can accom-
modate for various optimization objectives, including MWSR
and MMSE. Simulation results verify the superior performance
of the proposed algorithm over the state-of-art method [6].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink cell-free massive MIMO network,
where a set of APs L = {1, · · · , L}, each equipped with Mt

transmitting antennas, serve a set of UEs K = {1, · · · ,K},
each equipped with Mr receiving antennas. Assume that the
network works in time-division-duplex (TDD) mode and the
APs transmit the data streams sk to the UE k. Based on some
predefined pairing between the UEs and the APs, the CPU
allocates some of the data streams Sl ⊆ S = {s1, · · · , sK}
to AP l with Nl = |Sl| denoting the number of its served
UEs. AP l processes the signal sl ∈ CNl×1 generated from Sl
with precoding matrix Pl = [pl,1, · · · ,pl,Nl

] ∈ CMt×Nl and
transmits

xl = Plsl ∈ CMt×1. (1)

The received signal at UE k is

yk =

L∑
l=1

Hk,lxl + nk ∈ CMr×1, (2)

where nk ∼ CN (0, σ2
k) is the additive white Gaussian noise

(AWGN) and Hk,l ∈ CMr×Mt denotes the downlink channel
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between AP l and UE k. Subsequently, UE k uses combiner
wk ∈ CMr×1 to recover sk as:

ŝk = wH
k yk. (3)

The output signal-to-interference-plus-noise ratio (SINR) for
UE k is

SINRk =
|
∑
l∈Lk

wH
k Hk,lpk,l|2∑

k̄∈K\{k} |
∑
l∈Lk̄

wH
k Hk,lpk̄,l|2 + σ2

k‖wk‖2
,

(4)
where Lk denotes the set of APs serving UE k. Hence the
weighted sum-rate can be given by

R =
∑
k∈K

ωk log2 (1 + SINRk) bps/Hz (5)

with ωk, k = 1, · · · ,K denoting the weight for UE k.

B. Problem Formulation

This paper focuses on optimizing the precoding matrix
{Pl}l∈L and combiner {wk}k∈K to maximize the weighted
sum-rate (5) subject to the unit power constraint for each AP,
i.e.,

max
{Pl}l∈L,{wk}k∈K

∑
k∈K

ωk log2 (1 + SINRk)

s.t. ‖Pl‖2F ≤ 1, (l ∈ L),

(6)

where ‖ · ‖F stands for the Frobenius-norm.
Since the precoder Pl consists of both amplitude and

direction of the precoding, it can be decomposed into two
parts as

Pl = e−|θl|
Vl

‖Vl‖F
. (7)

Here Vl is intended to control the direction of the transmitted
signal and θl is the power control factor for AP l with e−|θl| ∈
[0, 1] guaranteeing the power constraint.

Hence, the constrained optimization problem (6) can be
reformulated as an unconstrained optimization problem:

max
{Vl,θl}l∈L,{wk}k∈K

∑
k∈K

ωk log2 (1 + SINRk) , (8)

which can be solved by a distributed algorithm. The key is
to the so-called quasi-NN, which draws analogies between a
cell-free network and an ANN as explained in the next.

C. The Analogies Between a Cell-Free Network and an ANN

The topology of a cell-free massive MIMO system is shown
in Fig. 1, where the links are differently colored to indicate
that a signal dedicated to some UE may be allocated to
multiple APs. We follow the idea proposed for relay network
communications in [14] and observe that it is similar to
an ANN [15]: i). The antennas of each AP and UE are
analogous to the neurons in the hidden layers of an ANN.
The beamforming weights Pl, channel weights Hk,l, and the
combining weights wk are similar to the connection weights
for a four-layer ANN. ii). The streams for each AP and the
combined stream can be regarded as the input layer and output
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Fig. 1. The Analogies Between a Cell-Free Network and an ANN

layer. iii). The downlink transmission of pilots is analogous to
the propagation of training samples in an ANN.

However, several practical limitations in a cell-free massive
MIMO system make it different from an ANN: i). Pilot
transmission in a cell-free massive MIMO system is con-
taminated by AWGN, while data processing in an ANN is
typically error-free. ii). In a cell-free massive MIMO system,
the channel weights are unknown and deterministic, whereas
all connection weights and biases in an ANN are adjustable.
iii). Data and weights in a cell-free massive MIMO system are
complex values, but an ANN is typically real-valued.

Hence we follow the term used in [14], [15], in which
the idea of Quasi-NN was orginally proposed to describe
a relay network, and refer to a cell-free massive MIMO
system as a Quasi-NN due to its similarities and differences
to an ANN. Inspired by the backpropagation (BP) algorithm,
we propose the distributed quasi-neural network precoding
(DQNP) algorithm to optimize (8) distributedly.

III. THE DISTRIBUTED QUASI-NEURAL NETWORK
ALGORITHM

In this section, we present the DQNP algorithm with MWSR
criterion via pilot training to optimize problem (8). Maximiz-
ing the output SNR amounts to minimizing the system MSE
[16, Equation (13)] that

SNR =
1

MSE
− 1. (9)
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This holds for the well-known MMSE receiver, which can be
implemented with downlink pilot sequences as:

wk =
(
YkY

H
k

)−1
Yks

∗
k. (10)

Here, sk ∈ Cτ×1 and Yk ∈ CMr×τ denote the downlink
τ -length pilot sequence and the received signal by UE k,
respectively.

According to (9) can be approximated as the weighted sum-
rate in (8):

R =

K∑
k=1

ωk log

(
1

1
τ

∑τ
i=1 |sk(i)− ŝk(i)|2

)
, (11)

where we use the approximation that MSE = 1
τ

∑τ
i=1 |sk(i)−

ŝk(i)|2, which is indeed asymptotically accurate as τ →∞.
Hence problem (8) can be reformulated as:

min
{Vl,θl}l∈L

J ,
K∑
k=1

ωk log

(
1

τ

τ∑
i=1

|sk(i)− ŝk(i)|2
)
.

(12)
As J is a function of Vl’s and θl’s, we present in below

the derivative ∂J
∂V∗l

and ∂J
∂θl

with the time index t omitted for
notational simplicity.

Proposition 1. The derivative respect to the direction precoder
Vl of AP l is,

∂J

∂vHln
=

∂J

∂x∗ln

∂x∗ln
∂vHln

+
∂J

∂xln

∂xln
∂vTln

, (13)

where vln is the n-th column of VT
l such that Vl =[

vTl1; · · · ;vTlMt

]T
and xln is the n-th element of transmitted

signal xl given in Eq. (1). Meanwhile,

∂J

∂x∗l
=

K∑
k=1

HH
k,lwk

∂J

∂ŝ∗k
, (14)

where
∂J

∂ŝ∗k
=

ωk (sk − ŝk)∑τ
i=1 |sk(i)− ŝk(i)|2

. (15)

And in (13)

∂xln
∂vHln

= e−|θl|
−vTlnsl tr

(
VlV

H
l

)− 1
2 vTln

2‖Vl‖2F
, (16)

∂x∗ln
∂vHln

= e−|θl|
2sHl ‖Vl‖F − vHlns

∗
l tr
(
VlV

H
l

)− 1
2 vTln

2‖Vl‖2F
. (17)

The derivative

∂J

∂θl
= −2<

{
sign(θl)e

−|θl|
(
∂J

∂x∗l

)H
Vl

‖Vl‖F
sl

}
, (18)

with sign(·) denoting the sign function that outputs 1 if the
input is positive and outputs −1 if the input is negetive.

Proof. Represent eq. (12) as

J =

K∑
k=1

ωk log

(
1

τ

τ∑
i=1

(sk(i)− ŝk(i)) (s∗k(i)− ŝ∗k(i))

)
.

(19)

Differentiating it with respect to ŝ∗(i), i = 1, · · · , τ , we obtain
(15).

By (2) and the definition of derivative on complex variables,
we have the following derivatives

∂yHk
∂x∗l

= HH
k,l,

∂yTk
∂x∗l

= 0. (20)

By the chain rule, we can prove (14)

∂J

∂x∗l
=

K∑
k=1

(
∂yHk
∂x∗l

· ∂J
∂y∗k

+
∂yTk
∂x∗l

· ∂J
∂yk

)
=

K∑
k=1

HH
k,lwk

∂J

∂ŝ∗k
.

(21)
Since xln = e−|θl|vTlnsl, n = 1, · · · ,Mt and ‖Vl‖2F =

tr
(
VlV

H
l

)
, we can prove derivatives (16) and (17) by the

quotient rule.
By (1) and (7), we have

∂xl
∂θl

= − sign(θl)e
−|θl| Vl

‖Vl‖F
sl. (22)

By the chain rule and the conjungate property, we can prove
(18).

Proposition 1 provides insights on designing a distributed
precoding algorithm:

1) Each UE locally updates the local MMSE combiner by
eq. (10).

2) Each UE transimits the derivative ∂J
∂ŝ∗k

as given in (15)
using wk for uplink precoding:

xul
k = wk

∂J

∂ŝ∗k
. (23)

And AP l receives

yul
l =

K∑
k=1

HH
k,lwk

∂J

∂ŝ∗k
+ nul

l , (24)

where nul
l is the AWGN at AP l with elements distributed as

CN (0, σ2
l ). Since the first term is the derivative ∂J

∂x∗l
as given

in eq. (14), AP l can obtain an approximation of derivative
∂J
∂x∗l

by an uplink transmission without knowing CSI. Although
yul
l is contaminated by the AWGN, it hardly affects the DQNP

algorithm owing to the average operation with a length-τ pilot
sequence when in the practical systems.

3) Since sl, Vl, and θl are locally available, AP l can obtain
derivatives ∂J

∂V∗l
and ∂J

∂θl
by eq.(14) ∼ (18) without CSI.

The results given in Proposition 1 are based on one pilot
sample. For a pilot sequence with length τ , we can average
the τ derivatives on each sample to reduce the effect of
transmission noise. We have

∇V̄l =
1

τ

τ∑
i=1

∂J(i)

∂Vl(i)
, (25)

∇θ̄l =
1

τ

τ∑
i=1

∂J(i)

∂θl(i)
. (26)
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Fig. 2. Illustration of the Distributed Quasi-neural Network Over-the-air
Iteration

We can apply the momentum gradient descent method with
multiple sets of pilot sequences:

∇Vl(t) = β∇Vl(t− 1) + (1− β)∇V̄l(t), (27)

∇θl(t) = β∇θl(t− 1) + (1− β)∇θ̄l(t). (28)

Here, β ∈ (0, 1) is the hyper-parameter for derivative updating
and t ∈ {1, · · · , T} is the pilot sequence index. The weights
for precoders are updated by

Vl(t) = Vl(t− 1)− α∇Vl(t), (29)

θl(t) = θl(t− 1)− α∇θl(t). (30)

where α is the step size, which should be chosen to strike a
balance between stability and speed of convergence (see [17]
for more details).

We summarize the DQNP algorithm in Algorithm 1, with
implementation illustrated in Fig. 2. It requires a downlink
signaling resource and an uplink signaling resource for a
training minislot. In each training minislot, the cell-free mas-
sive MIMO system propogates the training pilots forward
in the downlink and the derivatives backward in the uplink.
And each AP updates local weights Vl and θl according to
the derivatives without knowing the CSI. Multiple training
minislots are needed to achieve a desired performance before
data transmission.

From the computational complexity perspective, the DQNP
algorithm only requires matrix multiplication with linear com-
plexity O(Mt), while local ZF [11], local MMSE [12], and
Distributed-OTA [6] requires matrix inverse with complexity
of O(M3

t ).

Remark 1. The DQNP algorithm can be easily extended
to a variety of objective functions, such as MMSE. And the
combiners can also be optimized via the DQNP algorithm
with the derivative of combiner wk:

∂J

∂w∗k
= yk (sk − ŝk)

∗
. (31)

The average operation with length-τ pilot is

∇w̄k =
1

τ

τ∑
i=1

∂J(i)

∂wk(i)
. (32)

Algorithm 1 DQNP Algorithm (Weighted Sum-Rate)
Input: Pilot Sequence s(t), t ∈ {1, · · · , T}
Output: Precoder Vl, θl, l ∈ L
Initialize: Vl(0), and θl(0), set t = 0;
For t < T do:

1. t← t+ 1;
2. DL: Each AP transmits beamformed signal xl by (1).
3. Each UE computes MMSE receiver wk as (10).
4. Each UE recovers ŝk and calculates loss J with (3) and

(12).
5. UL: Each UE transmits uplink signal xul

k in (23) and
(15).

6. Each AP computes derivative ∂J
∂Vl

and ∂J
∂θl

by Proposi-
tion 1.

7. Each AP updates Vl and θl by (29) and (30).
End For

And the combiners are updated with the momentum gradient
descent as:

∇wk(t) = β∇wk(t− 1) + (1− β)∇w̄k(t), (33)

wk(t) = wk(t− 1)− α∇wk(t). (34)

In summary, the DQNP algorithm is executed over-the-air,
using training pilot sequences to implement BP algorithm by
exploiting the similarity between a cell-free massive MIMO
network and an ANN. And it requires no CSI. Moreover,
the DQNP algorithm is robust against the pilot contamination
problem as verified by the simulation result in the next section.

IV. SIMULATION RESULTS

Using a simulation setting similar to [6], we simulate a
network consisting of L = 100 four-antenna APs located
in a square grid with inter-site distance 100 meters and
height 10 meters. The APs serve K = 50 two-antenna
UEs randomly located in the area. We consider the Rayleigh
fading channel model: vec(Hk,l) ∼ CN (0, δk,lIMrMt

), where
δk,l[dB] = −30.5 − 36.7 log10(rk,l) and rk,l is the distance
between AP l and UE k in meter. The AP’s transmit power
is set to be 30 dBm; the UEs’ transmit power is 20 dBm; the
noise power {σ2

l = −95 dBm}l∈L and {σ2
k = −95 dBm}k∈K.

We use the sum rate, i.e., ωk = 1, k ∈ K in (5), to evaluate
the performance of the system based on the average of 100
Monte Carlo simulations with different channel realizations
and random drops of the UE locations.

In the first simulation, 50 orthogonal 128-length pilots are
adopted for the 50 UEs. For the proposed DQNP algorithm,
two cases are simulated: i) each UE is served by all the
100 APs, and ii) each UE is served by only the 20 nearest
APs. Their sum rate performances are shown by the circled
solid lines and circled dash lines in Fig. 3, respectively,
from which we see that proper UE-AP pairing can expedite
the convergence. In [6], the state-of-the-art Distributed-OTA
method only considered the first case. Fig. 3 shows that the
DQNP algorithm can converge to a higher sum-rate than the
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state-of-art method [6]. Although the DQNP algorithm con-
verges slower, it is worth noting that it requires one downlink
transmission and one uplink transmission per iteration, while
the Distributed-OTA [6] requires two uplink and one downlink
transmission per iteration.
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The second example simulates both non-orthogonal random
pilots and orthogonal pilots with varying length τ as indicated
by the circle-marked and diamond-marked lines respectively in
Fig. 4. For τ = 32 (τ < K = 50), using orthogonal pilots will
suffer from pilot contamination especially hard since identical
pilots will unavoidably be assigned to more than one UEs,
which explains why both the DQNP and the distributed-OTA
(the solid lines with diamond markers) see severe sum-rate
decrease as τ reduces from 64 to 32. Compared with the
distributed-OTA [6] the DQNP method with random pilots
has performance closer to that with orthogonal pilots for
τ ≥ 64 (compare the circled/diamond solid lines in blue versus
the ones in orange), which indicates that the DQNP method
is more robust to pilot contamination caused by the non-
orthogonal pilots. It is also seen that proper UE-AP pairing
can reduce the impact of pilot contamination.

V. CONCLUSION

In this paper, we draw analogies between a cell-free massive
MIMO system and an ANN and borrow the idea of the back-

propagation algorithm to maximize the weighted sum-rate of
a cell-free massive MIMO system via OTA training. The
resultant algorithm, i.e, the so-called DQNP algorithm, can
distributively optimize the precoders and combiners by prop-
agating training pilots forward in the downlink and feeding
derivatives backward in the uplink during the iterative OTA
training, which involves no explicit estimation or aggregation
of the channel information but has superior performance.
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