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Abstract— Cell-free massive multiple-input multiple-output
(MIMO) can resolve the inter-cell interference issue in cellular
networks through cooperative beamforming of the distributed
access points (APs). This paper focuses on an uplink cell-free
massive MIMO network and investigates novel methods to train
the central processing unit (CPU), the APs, and the users in
the network. To reduce the communication burden posed on
the fronthaul, each AP applies receive beamforming to compress
the vector signals into scalar ones before passing them to the
CPU for centralized processing. By drawing analogies between
an uplink cell-free network and a quasi-neural network and
borrowing the idea of backpropagation algorithm, we propose a
novel scheme named the distributed learning for uplink cell-free
massive MIMO beamforming (DLCB), which can achieve the
multi-AP cooperation without explicit estimation of their channel
state information (CSI). The DLCB has low computational
complexity and is applicable to various objective functions, such
as the minimum mean squared error criterion and the maximum
sum rate criterion. Extensive simulations verify that the proposed
scheme achieves superior performance over the state-of-the-art
methods.

Index Terms— Cell-free massive MIMO network, backpropa-
gation algorithm, quasi-neural network, distributed learning.

I. INTRODUCTION

CELL-FREE massive multiple-input multiple-output
(MIMO) is one of the promising technologies for

future generation of wireless networks [1], [2]. As shown
in Fig. 1, the geographically distributed access points (APs)
being connected to the central processing units (CPU) can
cooperate to form a virtual massive MIMO system [3], which
can achieve both the high spectral efficiency of massive
MIMO and the macro-diversity gain of joint and coherent
processing from distributed APs [1]. Hence it can provide
much higher quality-of-service for the user equipments (UEs)
than the conventional small-cell technology [4].

To fully reap the theoretical benefits of cell-free massive
MIMO, considerable research efforts have been devoted to
numerous aspects of cell-free massive MIMO in recent years,
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Fig. 1. Illustration of a cell-free massive MIMO network with geographically
distributed APs connected to the CPU via the fronthaul links.

including the network scalability [5], [6], [7], the user-centric
deployment [8], [9], [10], the cooperative precoding and com-
bining [11], [12], [13], [14], [15], [16], [17], [18], the power
allocation [14], [15], [19], [20], the pilot assignment [21], and
the analysis of hardware impairments [22], [23].

This paper investigates the cooperative transmission and
reception in the uplink scenario, where the cost of the APs’
cooperation is the main obstacle to real implementation. The
optimal performance of an uplink cell-free massive MIMO
network can be achieved by fully centralized minimum mean
square error (MMSE) method [18] (referred to as “Level 4”
method therein). But the centralized method is impractical
because it needs channel state information (CSI) between
all the APs and all the UEs and uses the inversions of a
collective channel matrix with high dimension. To avoid the
estimation and sharing of global CSI, simplistic maximum
ratio (MR) combining is proposed in [24], [25], and [26].
But its performance is far inferior to the other linear methods
that also require no CSI exchanges among the APs, such
as local ZF combining [26] and local MMSE combining
(referred to as “Level 2” in [18]). These local combiners,
albeit advantageous over MR combining, are considerably
inferior to the centralized methods [18], [27]. In [18], a large-
scale fading decoding method (the so-called “Level 3”) is
also proposed, which can outperform “Level 2” by using the
channel statistics available at the CPU. While the local designs
in [18] only consider cell-free massive MIMO networks with
single-antenna UEs, the authors of [28] consider the scenario
of multi-antenna UEs and propose to coordinate distributed
APs through over-the-air (OTA) interactions without explicit
channel estimation.
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Most existing papers assume that the fronthaul links from
the APs to the CPU have ample channel capacity [4], [22]. But
the fronthual links are throughput-limited and incur communi-
cation delays in practice [24]. Hence it may be unrealistic to
assume that the CPU can collect all data and/or CSI from all
the APs in real-time [29]. The authors in [24] and [25] consider
such constraints and analyze the effect of the fronthaul quan-
tization. But they only consider single-antenna UEs and use
MR combining. “Distributed-OTA” algorithm of [28] actually
requires no signal transmission over the fronthaul during the
process of optimizing the AP’s receiver. But outside of the
optimization process, it still requires all the APs to forward
high-dimensional vector data streams to the CPU [28], which
consumes excessive bandwidth of the fronthaul links.

To significantly reduce the required throughput of the
fronthaul link, in this paper we let all the APs first apply
receiver beamforming to reduce their received vector signal to
a scalar one before passing it to the CPU. Then to optimize
the beamforming weights of the APs without sharing their
CSI and the received samples, we resort to the concept of
“quasi-neural network”, which was originally proposed in
our previous work on interference-resilient relay communica-
tions [30], [31]. That is, by drawing striking analogies between
a cell-free massive MIMO network and an artificial neural
network (ANN), we can model a cell-free network as a “quasi-
neural network”. Owing to the UE-AP-CPU layered structure
of cell-free massive MIMO networks, the backpropagation
(BP) algorithm [32] can be used to optimize the transmit
and receive beamforming weights of cell-free massive MIMO
networks. The topological feature of the quasi-neural network
is that adjacent layers are connected, but the nodes in the same
layer are not. Therefore, when the BP algorithm is executed for
optimizing cell-free massive MIMO networks, the APs need
not to exchange data among themselves, nor to share their
CSI. The proposed scheme, termed as Distributed Learning for
uplink Cell-free massive MIMO Beamforming (DLCB), can
accommodate various optimization objectives, including the
MMSE criterion and the maximum sum rate (MSR). It has low
computational complexity and can significantly outperform the
state-of-the-art methods, including “Distributed-OTA” in [28]
and “Level 3” in [18] as verified by the simulations.

The rest of the paper is organized as follows. Section II
introduces the system model of uplink cell-free massive
MIMO, formulates the optimization problem, and models the
network as a quasi-neural network by proposing the novel
operations of the UEs and the APs. Section III proposes the
DLCB scheme, designs a frame to support it, and analyzes
the number of multiplications conducted by the distributed
nodes and the number of OTA and fronthaul signaling per
round of training. Section IV presents the scheme for the
special scenario of cell-free massive MIMO networks with
single-antenna UEs in comparison with the algorithms in [18].
Section V presents simulation results to verify the superior
performance of the proposed algorithms over the state-of-the-
art. Section VI gives the conclusion.

The following notations are used throughout this paper.
(·)∗, (·)T , and (·)H stand for conjugate, transpose, and con-
jugate transpose, respectively. R is the set of real numbers.
CM×N is the set of M ×N complex matrices. A(m,:) is the
m-th row of the M ×N matrix A. Re{·} represents the real

Fig. 2. System structure of an uplink cell-free massive MIMO network with
K N -antenna UEs, L M -antenna APs and one CPU.

part. σ ◦ V stands for a composite function of σ(·) and V.
diag(a) is a diagonal matrix with vector a being its diagonal.
blkdiag(u1, · · · ,uK) is a block diagonal matrix with vector
u1, · · · ,uK being its diagonal.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Cell-free massive MIMO shown in Fig. 1 has a layered
structure as illustrated in Fig. 2, where K UEs with N
antennas communicate with L APs with M antennas and the
APs are connected to a CPU via the fronthaul links.

Every UE transmits a single data stream by applying the
beamforming vector uk ∈ CN to the data sk(i), i.e.,

xk(i) = uksk(i), k = 1, · · · , K, (1)

where i is the time slot index and is omitted in the sequel
for notation simplicity, and ∥uk∥2 ≤ 1 is the power constraint
per UE.

Let Hl,k ∈ CM×N denote the uplink channel between the
k-th UE and the l-th AP, Hl ≜ [Hl,1, · · · ,Hl,K ] denote the
aggregated uplink channel seen by the l-th AP, and x ≜
[xT

1 ,xT
2 , · · · ,xT

K ]T ∈ CKN denote the aggregated transmit
signal of all UEs. Then the received signal of the l-th AP is

yl = Hlx + zl, l = 1, · · · , L, (2)

where zl ∼ CN (0, σ2I) is the additive complex-valued
Gaussian noise. To reduce the required bandwidth of the
AP-to-CPU fronthaul, the APs apply beamforming weights
vl ∈ CM to compress the vector signals into scalars

rl = vH
l yl, l = 1, · · · , L, (3)

before sending them to the CPU. The CPU collects all these
signals into r ≜ [r1, r2, · · · , rL]T ∈ CL and applies the
combining matrix W ∈ CL×K (L ≥ K) to obtain

ŝ = WHr ∈ CK (4)

as estimation of the transmitted signals of the K UEs.
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TABLE I
DIFFERENCES BETWEEN A QUASI-NEURAL NETWORK AND AN ANN

This paper focuses on optimizing the weights of the UEs,
the APs, and the CPU according to some objective function f
subject to the power constraint per UE. That is,

minimize
{uk}K

k=1,{vl}L
l=1,W

f(u,v,W;H)

s.t. ∥uk∥2 ≤ 1, for all k = 1, · · · , K, (5)

where f can be an arbitrary cost function of interest, such as
the mean squared error (MSE) and the negative of the sum
rate.

The main challenge in solving (5) is that the UEs, the
APs, and the CPU need to optimize their respective weights
in a distributed manner without knowing H. The key is to
reformulate (5) into an unconstrained problem by relating a
cell-free massive MIMO network to a quasi-neural network
as explained below.

B. A Quasi-Neural Network Representation
To meet the power constraint that ∥uk∥2 ≤ 1, we denote

uk ≜
pk

∥pk∥
e−θ2

k , k = 1, · · · , K, (6)

where pk ∈ CN and θk ∈ R control the direction and the
amplitude of the weight, respectively.

Now that the power constrains in (5) is automatically met,
we rewrite (5) as an unconstrained problem

minimize
{pk,θk}K

k=1,{vl}L
l=1,W

f(p, θ,v,W;H). (7)

Based on (6) and Fig. 2, we draw a layered diagram
of an uplink cell-free massive MIMO network as shown in
Fig. 3, which can be represented by the so-called quasi-neural
network [31]. As a concept originally proposed in our previous
work [31], the quasi-neural network [31] is topologically simi-
lar to an ANN owing to its layered structure: multi-layer nodes,
connection weights, and nonlinear functions. But it differs
from an ANN in many aspects as summarized in Table I. Most
important, the quasi-neural network is a model-based tool
that has clear physical meanings, for example, its nonlinear
function may be the power constraint and its fixed weights
may be the physical channel but the activation function and
the connection weights of the classic ANN generally has no
clear physical meanings.

Indeed, we can draw the analogies between an uplink
cell-free massive MIMO network and a quasi-neural network
in the following aspects:

i) As illustrated by the shaded band in Fig. 3, the cell-free
network has a layered structure consisting of the data

Fig. 3. A quasi-neural network representation of an uplink cell-free massive
MIMO network with K UEs, L APs and one CPU.

streams, and the outputs of the UEs, the APs, and
the CPU.

ii) As illustrated by the rectangles in Fig. 3, the cell-free
network has complex-valued weights { pk

∥pk∥}
K
k=1, {Hl ◦

vl}L
l=1, and W, in which the channel coefficients

{Hl}L
l=1 are fixed and unknown.

iii) The power constraint regulated by the multiplying term
e−θ2

k is analogous to the nonlinear function of the quasi-
neural network.

iv) The network has inherent randomness due to channel
noise.

Inspired by these analogies, we can use the quasi-neural net-
work to represent a cell-free network and thus borrow the idea
of the BP algorithm [31] to achieve distributed optimization of
a cell-free massive MIMO network, which requires no explicit
CSI, consumes reduced fronthaul bandwidth and enjoys low
computational complexity, as shown next.

III. THE DISTRIBUTED LEARNING-BASED CELL-FREE
BEAMFORMING (DLCB) SCHEME

In this section, we first derive the DLCB algorithm and then
present a frame design to support the algorithm.

A. The DLCB Algorithm
Just like a conventional neural network that is trained based

on some training “data”, cell-free massive MIMO networks
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can be optimized based on pilot sequences. First, consider
optimizing the weight of the CPU by minimizing the MSE,
i.e., E

[
∥WHr− s∥2

]
. We use the Monte Carlo trials to

approximate the expectations as

minimize
W

1
τ

τ∑
i=1

∥WHr(i)− s(i)∥2, (8)

where s(i) ∈ CK×1, i = 1, . . . , τ is the pilot sequences of the
K users and τ is the pilot length. Equating the first derivative
of the function in (8) with respect to the weight W to zero,
we can obtain the optimal combiner

Wopt =

[
τ∑

i=1

r(i)r(i)H

]−1 [ τ∑
i=1

r(i)s(i)H

]
, (9)

which uses no explicit CSI but the received signals r
and the pilot sequences s. As the length of the pilots
increases to infinity, the Monte Carlo approximation equals
the value of the expectation and thus Wopt → WMMSE =(
E[rrH ]

)−1 E[rsH ].
Given Wopt, the weights of the UEs and the APs can be

updated according to

minimize
{pk,θk}K

k=1,{vl}L
l=1

f(p, θ,v;H,W = Wopt). (10)

To this end, we attempt to derive the gradients of f with
respect to the weights of the nodes in the network based on a
single sample of the pilot sk(i). Inspired by the BP algorithm,
we use the chain rule of derivatives to establish the following
proposition.

Proposition 1: Let ∇vl
f = ∂f

∂v∗l
∈ CM denote the complex

gradient operator, in which the gradient is a vector with the
m-th element defined as [∇vl

f ]m = ∇[vl]mf = ∂f
∂[v∗l ]m

. The
gradient of the objective function f with respect to the weight
of the l-th AP is

∇vl
f = yl

(
∂f

∂r∗l

)∗
∈ CM , (11)

where ∂f
∂r∗l

is the l-th element of

∇rf = W · ∇ŝf ∈ CL. (12)

The gradient of f with respect to the weight of the k-th UE is

∇uk
f = s∗k · ∇xk

f ∈ CN , (13)

where ∇xk
f ∈ CN is the k-th block of

∇xf ≜

∇x1f
...

∇xK
f

 =
L∑

l=1

HH
l vl

∂f

∂r∗l
∈ CKN . (14)

Let ∇ak
bk = ∂bk

∂a∗k
∈ CM ′×N ′ denote the complex gradient

operator, in which the gradient is a matrix with the [m, n]-th
element defined as [∇ak

bk]mn = ∇[ak]m [bk]n = ∂[bk]n
∂[ak]m

for
∀m ∈ {1, 2, · · · , M},∀n ∈ {1, 2, · · · , N ′}. According to (6),

∇pk
f = ∇pk

u∗k · ∇uk
f +∇pk

uk · (∇uk
f)∗, (15)

where

∇pk
u∗k =

e−θ2
k

∥pk∥

(
IN − pkpH

k

2∥pk∥2

)
, (16)

and

∇pk
uk = − e−θ2

k

2∥pk∥3
pkpT

k ; (17)

the derivative with respect to the parameter θk is

∂f

∂θk
= 2Re

{
∂uH

k

∂θk
· ∇uk

f

}
, (18)

where

∂uH
k

∂θk
= −2θke−θ2

k
pH

k

∥pk∥
. (19)

Proof: The proof is relegated to Appendix.
The result of ∇ŝf in Proposition 1 depends on the cost

function. For the MMSE criterion, the cost function is

f =
1
τ

K∑
k=1

τ∑
i=1

|ŝk(i)− sk(i)|2, (20)

and the derivative is
∂f

∂ŝ∗k(i)
=

ŝk(i)− sk(i)
τ

. (21)

For the MSR criterion, according to the relationship that
Rate = −log2MSE [33], the cost function is

f =
K∑

k=1

log2

[
1
τ

τ∑
i=1

|ŝk(i)− sk(i)|2
]
, (22)

for which
∂f

∂ŝ∗k(i)
=

ŝk(i)− sk(i)∑τ
i=1 |ŝk(i)− sk(i)|2

. (23)

Based on Proposition 1, all the APs and the UEs can update
their processing weights based on the derivatives (11), (15) and
(18) in a distributed manner. Indeed, combining (11) and (12)
yields

∇vl
f = yl

[
W(l,:) · ∇ŝf

]∗
, (24)

where yl is locally available to the l-th AP, and W(l,:) and
∇ŝf are available to the CPU. Given that the CPU unicast
the scalar signal

[
W(l,:) · ∇ŝf

]∗
to the l-th AP through the

fronthaul link, the AP can obtain the derivative (24) without
any explicit channel information.

In a way similar to the AP’s obtaining ∇vl
f , the k-th UE

can obtain the derivatives in (15) and (18). Note that ∇pk
u∗k,

∇pk
uk, and ∂uH

k

∂θk
are locally available to the k-th UE as can

be seen from (16), (17), and (19). Combining (13) and (14)
yields

∇uk
f = s∗k

(
L∑

l=1

HH
l,kvl

∂f

∂r∗l

)
. (25)

Given that the l-th AP broadcast the beamformed derivative(
vl

∂f
∂r∗l

)∗
to the UE through the reverse channel, the k-th

UE will receive the combined signal
∑L

l=1 HT
l,k

(
V ∂f

∂r∗l

)∗
owing to the channel reciprocity; thus, the UE can obtain
the derivative (25) and the derivatives (15) and (18) without
knowing explicit CSI.

Now we see that the distributed APs and UEs can obtain the
derivatives of their respective weights through two phases: the
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Fig. 4. Illustration of two phases in the DLCB algorithm: the forward
propagation of the signals and the backpropagation of the derivatives.

forward propagation of the signals, and the backpropagation
of the derivatives as shown in Fig. 4. In Phase I, the k-th UE
transmits the beamformed signal xk = uksk = pk

∥pk∥e
−θ2

ksk,
the l-th AP compresses the received vector signal and forwards
rl = vH

l yl, and then the CPU applies an equalizer to the
received signal to obtain ŝ = WHr. In Phase II, the CPU uses
the received signal r and the pilot s to update its own weight
W according to (9), and then transmits the beamformed
derivative

[
W(l,:) · ∇ŝf

]∗
to the AP; the AP obtains ∇vl

f
as shown in (24) and transmits the beamformed derivative(
vl

∂f
∂r∗l

)∗
to the UE so that the UE obtains (∇uk

f)∗ as

shown in (25), and hence (∇pk
f)∗ and

(
∂f
∂θk

)∗
as shown

in (15) and (18), respectively. Through one round of the
forward propagation of the signals and the backpropagation
of the derivatives, the nodes can update the derivatives and
the weights pk, θk, vl, and W without knowing explicit CSI
[cf. (18), (15), (11), and (9)].

The derivatives given in Proposition 1 are based on a
one-sample pilot s(i), whereas the cost functions in (20) and
(22) include a set of τ -length pilots. Accordingly, we have τ
results for the derivative of f with respect to each weight and
can average them to mitigate the channel noise:

dΘ =
1
τ

τ∑
i=1

∂f

∂Θ∗
(i), Θ ∈

{
{pk, θk}K

k=1, {vl}L
l=1

}
. (26)

Furthermore, given multiple sets of pilot sequences, we can use
the exponentially weighted moving average (EWMA) [34] to
iteratively update the derivatives as

dΘ(t) = λdΘ(t− 1) + (1− λ)dΘ(t), (27)

where t ∈ {1, 2, . . . T} and λ ∈ [0, 1) is an adjustable
coefficient that determines the memory length [35]. In-depth
mathematical analyses of EWMA can be founded in [34], [35],
[36], [37], and [38], while extensions and improvements of
EWMA are discussed in [38], [39], and [40]. The processing
coefficients of the UEs and the APs are then updated by1

Θ(t) = Θ(t− 1)− αdΘ(t), (28)

1In general, the update for a complex variable x to minimize f(x) is
x← x−α ∂f

∂x∗ not x← x−α ∂f
∂x

, since ∂f
∂x∗ = 1

2

(
∂f

∂Re{x} + j ∂f
∂Im{x}

)
,

while ∂f
∂x

= 1
2

(
∂f

∂Re{x} − j ∂f
∂Im{x}

)
.

Algorithm 1 The DLCB Scheme
Initialization: Randomly initialize W(0), vl(0), pk(0),

θk(0); α, λ; dW(0) = 0, dvl
(0) = 0, dpk

(0) = 0, dθk
(0) =

0.
Input: T sets of τ -length pilot sequences {sk(i), k =

1, · · · , K, i = 1, · · · , τ}T
t=1.

Output: W, {vl}L
l=1, {pk, θk}K

k=1.
1: Synchronize the pilot sequences.
2: for t = 1, 2, . . . , T do
3: Each UE applies the beamforming weight uk(t−1) =

pk(t−1)
∥pk(t−1)∥e

−[θk(t−1)]2 to the pilot sequence {sk(i), i =
1, . . . , τ}t by (1) and then transmits it to the AP.

4: The APs receive the signals yl(i), l = 1, · · · , L, i =
1, . . . , τ in (2), apply the weights vl(t − 1) to obtain
rl(i) = vl(t− 1)Hyl(i) and forward them to the CPU.

5: The CPU combines signal r with the weight W to
obtain ŝ(i) = W(t− 1)Hr(i), i = 1, · · · , τ .

6: The CPU calculates ∇ŝf(i), i = 1, · · · , τ by (21) or
(23), then passes the beamformed signal W(l,:)(t − 1) ·
[∇ŝf(i)]∗ , i = 1, · · · , τ to the AP, and updates W(t)
according to (9).

7: The APs use the feedback signal from the CPU to
compute ∇vl

f(i), i = 1, · · · , τ by (24), dvl
(t) by (26),

and dvl
(t) by (27), broadcast the beamformed signal[

vl(t− 1) ∂f
∂r∗l (i)

]∗
, i = 1, . . . , τ to the UE, and updates

vl(t) according to (28).
8: The UEs receive

∑L
l=1 HT

l,k

[
vl(t− 1) ∂f

∂r∗l (i)

]∗
, i =

1, · · · , τ , obtain ∇uk
f(i), i = 1, · · · , τ by (25), compute

∇pk
f(i), i = 1, · · · , τ by (15), dpk

(t) by (26), dpk
(t)

by (27), and updates pk(t) according to (28). Likewise,
the UEs compute ∂f

∂θ∗k
(i), i = 1, · · · , τ by (18), dθk

(t) by
(26), dθk

(t) by (27), and update θk(t) according to (28).
9: end for

where α ∈ (0, 1) is the learning rate, also known as the step
size, which is chosen to strike a balance between convergence
speed and accuracy [13]. Further insights on the choice and
convergence of α can be found in [29] and [41].

The DLCB scheme is summarized in Algorithm 1, where
Step 3 − 5 correspond to the signal forward propagation in
Fig. 4, and Step 6 − 8 correspond to the backpropagation in
Fig. 4. The forward-backward procedure is iterated T times in
the for-loop.

In addition, the proposed DLCB algorithm, a first-order
optimization algorithm, is applicable to a wide variety of
objective functions, which should generally be restricted to
be Lipschitz continuous or to have Lipschitz continuous
derivatives [32, Section 4.3]. For different objective functions,
only the derivative ∂f

∂ŝ∗k(i) differs, while all the other forward
propagation and backpropagation remain the same. So the
DLCB scheme is applicable to various objective functions.

Remark 2: We can generalize the proposed DLCB scheme
to the scenario where the AP generates Q-dimension vectors.
Specifically, the weights of the l-th AP and the CPU are Vl ∈
CM×Q and W ∈ CQL×K , respectively. And L ≥ K is relaxed
to QL ≥ K. Compared with the results for one-output APs,
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Fig. 5. Simplified frame structure for the DLCB algorithm with forward
propagation and backpropagation.

the differences are

∇Vl
f = yl

(
∂f

∂r∗l

)H

∈ CM×Q, (29)

where ∇rl
f is the l-th block of ∇rf = W · ∇ŝf ∈ CQL×1

and

∇xf =
L∑

l=1

HH
l Vl · ∇rl

f ∈ CKN . (30)

B. A Frame Design to Support the DLCB Algorithm and Its
Implement in 5G 3GPP NR

As shown in Fig. 4, the DLCB algorithm works for TDD
systems with channel reciprocity and transfers information
in both forward and backward directions. To support the T
rounds of OTA training of the DLCB algorithm, we design
the frame structure as shown in Fig. 5. After the initial T
rounds of the OTA training in Fig. 5, the UEs can transmit
their payload data. Since a wireless channel is typically time-
varying, cell-free networks need to be retrained every once in
a while. But the subsequent training can be significantly less
frequent since the previously obtained weights can be used as
a “warm start”; thus, as shown in Fig. 5, the training sessions
after the initial one can be significantly sparser and briefer as
verified by the simulations.

Indeed, the OTA forward and backword signaling can be
integrated into the 5G 3GPP NR frame/slot structure as
illustrated in [13] and [17]. In a similar vein, we show in
the next how the DLCB scheme can also be implemented into
the 5G-NR frame/slot structure.

A 5G-NR frame consists of 10 subframes, each of which
spans 8 slots and can be divided into pilot transmission
phases and data transmission phases [13, Fig. 1. (b)]. While
each slot contains 14 orthogonal frequency division multi-
plexing (OFDM) symbols, a minislot structure consisting of
two OFDM symbols can accommodate for either uplink or
downlink signaling [13], [17].

We integrate the frame of our DLCB scheme in Fig. 5
into the 5G-NR frame/slot structure as shown in Fig. 6. The
training sessions occurs during the first slot and then the UEs
transmit their payload data during the subsequent slots. The
training slot contains up to seven minislots, of which every two
consecutive minislots accommodate for one round of uplink-
and-downlink training. Therefore, one training slot can support
up to 14/4 = 3.5 training iterations.

Remark 3: We can further reduce the overhead of the
OTA signaling in the backpropagation by letting the l-th
AP broadcast one (instead of τ ) signal to the UEs for
each set of τ -length pilots. As shown in (26), for each

Fig. 6. Illustration of integrating the frame structure of the DLCB scheme
into the 5G-NR frame/slot structure.

set of τ -length pilots, each node needs to obtain τ deriva-
tives, i.e., ∂f

∂Θ∗ (i), i = 1, · · · , τ . To this end, our proposed
Algorithm 1 uses the most straightforward method: after the
forward propagation of τ pilots, the CPU and each AP
transmit τ beamformed derivatives, i.e.,

[
W(l,:)(i) · ∇ŝf(i)

]∗
and

[
vl(i) ∂f

∂r∗l
(i)
]∗

, i = 1, · · · , τ in the backpropagation,

respectively (cf. Step 6 and Step 7 in Algorithm 1). Then
each AP and each UE can obtain their own τ derivatives,
i.e., ∇vl

f(i) and ∇uk
f(i), for i = 1, · · · , τ , respectively

(cf. (24) and (25)), and thus obtain the averages dv, dpk
, and

dθk
in (26) [cf. (15) and (18)]. But now we propose another

implementation to reduce the OTA overhead. Specifically,
on the UE side, substituting (15) into (26) is

dpk
=

1
τ

τ∑
i=1

∂f

∂p∗k
(i)

=
1
τ

τ∑
i=1

∇pk
u∗k(i) · ∇uk

f(i) +∇pk
uk(i) · [∇uk

f(i)]∗

(a)
= ∇pk

u∗k · duk
+∇pk

uk ·
(
duk

)∗
, (31)

where duk
≜ 1

τ

∑τ
i=1∇uk

f(i);
(a)
= holds because ∇pk

u∗k
and ∇pk

uk only depend on the UE’s own weight [cf. (16)
and (17)]; and according to (13)

duk
=

L∑
l=1

HH
l,kvl

[
1
τ

τ∑
i=1

s∗k(i)
∂f

∂r∗l
(i)

]
, (32)

where s∗k(i), i = 1, · · · , τ are the known pilots and
∂f
∂r∗l

(i), i = 1, · · · , τ are the received signals of the
AP in the backpropagation. Hence, the l-th AP can
locally calculate vl

[
1
τ

∑τ
i=1 s∗k(i) ∂f

∂r∗l
(i)
]

and broadcast
it to the UEs. Then the UE will receive the signal∑L

l=1 HT
l,kv

∗
l

[
1
τ

∑τ
i=1 s∗k(i) ∂f

∂r∗l
(i)
]∗

owing to the channel

reciprocity; thus, the UE can obtain 1
τ

∑τ
i=1∇uk

f(i) in (32)
and dpk

in (31). Similarly, the UE can obtain dθk
(cf. (18),

(19), and (26)). In doing so, for each set of pilots, the AP
only needs to transmit one (not τ ) signal to the UEs, which
significantly reduces the OTA overhead of the algorithm.

Remark 4: The OTA training between the UEs and the APs
consumes time-frequency resource of the wireless network.
To expediate the convergence and hence to reduce the required
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Fig. 7. Illustration of Tin rounds of information exchanges via the fronthaul
for each OTA interaction.

number of OTA interactions, we may use another implemen-
tation for each OTA training: the APs and the CPU can
update their weights multiple times via Tin ≥ 2 rounds of
signaling exchanges over the cabled fronthual as illustrated
by Fig. 7. The underlying assumption of the aforementioned
implementation is that the signaling exchange is less costly
over the cabled fronthaul than via OTA. For real implemen-
tation, of course, Tin can be optimized according to the true
costs of the signaling exchange over the fronthual and OTA.

C. The Computational Complexity and Signaling Overhead
In the following, we analyze the computational complexity

and the signaling overhead required by the DLCB scheme.
As the DLCB is a distributed algorithm, its computational

burden is apportioned among the nodes. On the AP side,
according to (11), each AP first needs O(M) multiplications to
compute update direction of weight yl( ∂f

∂r∗l
)∗, where ( ∂f

∂r∗l
)∗

is the received feedback signal from the CPU. On the UE side,
substituting (13), (16), and (17) into (15) is

∇pk
f =

e−θ2
ks∗k

∥pk∥
∇xk

f −
Re
{

e−θ2
ks∗kp

H
k ∇xk

f
}

∥pk∥3
pk ∈ CN ,

(33)

and substituting (13) and (19) into (18) is
∂f

∂θk
=
−4θk

∥pk∥
Re
{

e−θ2
ks∗kp

H
k ∇xk

f
}

, (34)

where the real part has been computed in (33). Note that ∇xk
f

is the received feedback signal, in which the summations and
matrix-vector multiplications are automatically achieved via
the OTA propagation between the APs and the UEs. Hence,
the computational complexity is O(N) for a UE to update
its beamforming weight. In contrast, in each iteration of the
Distributed-OTA algorithm from [28], each UE first uses the
received signals and the pilots to compute the N ×N matrix
inverse to obtain its weight in the downlink transmission; and
then each AP uses all the received signals and the pilots to
compute the M×M matrix inverse to obtain its weight in the
uplink transmission. Hence, the computational complexity is
O(N3) and O(M3) for a UE and an AP to update the weight
in the Distributed-OTA algorithm from [28], respectively.
Therefore, the DLCB has much less computational complexity.

During the pilot transmission, the proposed Algorithm 1
and 2 need each AP to pass a scalar to the CPU in each itera-
tion, whereas the algorithm from [28] does not need that and

Fig. 8. Illustration of two phases in the DLCB algorithm for cell-free
networks with single-antenna UEs.

thus requires less training overhead on fronthaul. But in the
data transmission, our algorithms and the algorithm from [28]
need no iterations. The DLCB scheme still needs each AP
to pass one scalar signal to the CPU over the fronthaul, but
the Distributed-OTA algorithm in [28] requires each AP to
transmit K scalar signals to the CPU; thus the fronthaul load
required by our algorithm is only 1

K of that required by the
algorithm from [28]. As in most communication scenarios,
the time duration of data transmission is much longer than
that of pilot transmission and K ≫ 1 in a typical cell-free
network, the overall communication burden upon the fronthaul
by the DLCB is significantly less than the algorithm from [28].
For instance, if the ratio of the time duration allocated for
pilot transmission and data transmission is 1 : 10, for the
proposed Algorithm 1 and 2 and the algorithm from [28], the
load upon the fronthaul for pilot transmission is 1, Tin, and 0,
respectively; and the fronthaul load for data transmission is
10, 10, and 10K, respectively. Hence, the total cost on the
fronthaul is 11, 10 + Tin, and 10K, respectively. Even for
small numbers of UEs, for instance, K = 4 (but K is
typically larger than 4 in practice), the fronthaul cost required
by our algorithms is only about 1/4 of that required by the
Distributed-OTA algorithm from [28].

About the OTA training overhead, for our algorithms, one
iteration consists of one uplink transmission and one downlink
transmission, while that of [28] takes two uplink transmissions
and one downlink transmission. Therefore, our algorithms
require less OTA training than the algorithm of [28].

IV. THE SPECIAL SCENARIO OF SINGLE-ANTENNA UES

In this section, we consider a special and practically relevant
case that each UE has only one transmit antenna. In this
scenario, we can simplify the DLCB scheme to waive the
backpropagation via OTA signaling between the APs and the
UEs, but only via the fronthaul signaling between the APs and
the CPU as shown in Fig. 8, which significantly reduce the
complexity of the algorithm.

In the forward propagation, the single-antenna UE transmits
the pilot signal directly, i.e., xk = sk, k = 1 · · · , K. The AP
receives yl and forwards rl = vH

l yl to the CPU before the
CPU yields the estimate ŝ = WHr. In the backpropagation,
the CPU calculates its weights W by (9), and then transmits
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Algorithm 2 The DLCB Algorithm for the Case of Single-
Antenna UEs

Initialization: Randomly initialize W(0), vl(0); α, λ;
dW(0) = 0, dvl

(0) = 0.
Input: One τ -length pilot sequence {sk(i), k =

1, · · · , K, i = 1, · · · , τ}.
Output: W, {vl}L

l=1.
1: Synchronize the pilot sequences.
2: Each UE transmits the pilot sequence {sk(i), i =

1, . . . , τ} to the AP.
3: The AP receives the signals yl(i), l = 1, · · · , L, i =

1, . . . , τ in (2).
4: for t = 1, 2, . . . , T̃ do
5: The AP applies the weight vl(t− 1) to obtain rl(i) =

vl(t− 1)Hy(i), i = 1, · · · , τ by (3).
6: The CPU combines signal r = [r1, · · · , rL]T with the

weight W to obtain ŝ(i) = W(t− 1)Hr(i), i = 1, · · · , τ .
7: The CPU passes the beamformed signal W(l,:)(t −

1) [∇ŝf(i)]∗ , i = 1, · · · , τ to the AP, and updates W(t)
according to (9).

8: The AP uses the feedback signal from the CPU to
compute ∇vl

f(t) by (24) and dvl
(t) by (27), and updates

vl(t) according to (28).
9: end for

the beamformed derivative
[
W(l,:) · ∇ŝf

]∗
to the AP. Then

the AP obtains ∇vl
f as shown in (24). Since the UE uses

no weight, the APs need not to transmit the beamformed
derivative to the UEs. Consequently, it is sufficient to use only
one set of pilot sequences to train the APs and the CPU to
update their weights via the fronthaul signaling. The DLCB
algorithm for the case of single-antenna UEs is summarized
in Algorithm 2.

In this special scenario, no OTA signaling is required other
than the transmission of one τ -length pilot sequence. The UEs
need not to calculate their beamforming weights; the APs
need not to calculate the backpropagation. Despite the striking
simplicity, the DLCB scheme can outperform the state-of-the-
art “Level 3” method proposed in [18], as we will see soon.

V. NUMERICAL SIMULATIONS

This section presents numerical examples to verify the effec-
tiveness of the proposed DLCB algorithm. In the examples
except for the last two, the channels between the APs and
the UEs are assumed to be frequency-flat Rayleigh fading and
remain static. In the first three examples, the channels Hk’s
are simulated without the path loss. The input SNRs of the
different UEs are assumed to be the same value ρ = 1

σ2 . The
length of pilot sequence τ = 64. The hyper-parameter and
learning rate used in (27) and (28) are λ = 0.9 and α = 0.3,
respectively. Other parameters are given on the top of the
figures.

According to the signal transmission process [cf. (1)-(4)],
we can obtain the ideal sum rate of an uplink cell-free network
with perfect CSI as

R =
K∑

k=1

Rk =
K∑

k=1

log2(1 + γk), (35)

Fig. 9. Convergence of per-UE rate for the DLCB scheme using the MMSE
and the MSR criteria.

with the output SINR of the kth UE being

γk =
|wH

k Gkuk|2

∥wH
k GDu∥2 + σ2wHDvw

, (36)

where

G ≜

vH
1 H1

...
vH

L HL

 ∈ CL×KN with Gk ≜

vH
1 H1,k

...
vH

L HL,k

 ∈ CL×N

being its k-th column block, Du ≜ blkdiag(u1, · · · ,uK) ∈
CKN×K and Dv ≜ diag(∥v1∥2, · · · , ∥vL∥2) ∈ CL×L. Note
that expression (36) is only used as a metric to evaluate the
performance of our proposed algorithms and is not needed
in the optimization procedure. Based on the expression (35)
and (36), in the simulations we can calculate the rate per
UE {Rk, k = 1, · · · , K} or the sum rate R to evaluate the
performance of the system based on the average of 100 Monte
Carlo trials.

In the first example, we simulate the MMSE criterion in (20)
and the MSR criterion in (22) to see the convergence of the
DLCB algorithm. As shown in Fig. 9, the DLCB algorithm
converges as the number of iterations increases. Here one iter-
ation represents one round of forward and backward training
sessions (cf. Fig. 4). The DLCB algorithm using the MSR
criterion, labeled as DLCB (MSR), appears to outperform that
using the MMSE criterion. Indeed, for the MMSE criterion,
the derivative in (21) suffers from the so-called gradient
vanishing issue as the iterations proceeds. In contrast, the
DLCB using the MSR criterion is largely free from this issue
owing to the denominator in (23).

In the second example, we simulate another implementation
of the DLCB scheme as described in Remark 4. As shown in
Fig. 10, having Tin ≥ 2 rounds of the AP-to-CPU iterations
over the fronthaul can expedite the convergence of the DLCB
scheme, leading to fewer OTA iterations. In particular, only
15 OTA iterations are needed for Tin = 2 to achieve the
performance of 30 iterations, and the OTA overhead is reduced
by nearly 75% for Tin = 5.

In the subsequent performance comparisons, we simulate
the same setting used in [18], where the APs are deployed
on a square grid with the distance between neighboring APs
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Fig. 10. Convergence of average sum rate under different number of the
AP-to-CPU iterations.

Fig. 11. Comparison of average sum rate between the DLCB algorithm and
the Distributed-OTA algorithm proposed in [28] as the number of iterations.

of 50 m and minimum distance between UEs of 10 m; the
UEs transmit with power 20 dBm, and the noise power is
−96 dBm; and the path loss model is βkl [dB] = −30.5 −
3.67log10

(
dkl

1 m

)
+ Fkl,where dkl is the distance between the

k-th UE and the l-th AP and Fkl ∼ N (0, 42) is the shadow
fading.

We compare the convergence rate of the DLCB scheme with
that of the Distributed-OTA algorithm proposed in [28], where
ρBS = 30 dBm, σ2

UE = −96 dBm. As shown in Fig. 11,
our algorithms take no more than five iterations to outperform
the final convergence value of the Distributed-OTA algorithm
from [28] and always outperform the algorithm from [28]
in any number of iterations. That is, the DLCB algorithm
can significantly outperform the Distributed-OTA algorithm in
both the sum rate and the convergence speed, even though the
latter requires uplink signaling twice per OTA iteration.

Then we compare the impact of the signaling overhead on
the DLCB scheme with that on the Distributed-OTA algorithm
from [28] under the 5G-NR frame/slot structure. As illustrated
in Sec. III-B, the training session occurs in the first slot and
one training slot contains up to 3.5 training iterations. Con-
sidering the switching time of uplink and downlink signaling,
we reserve two OFDM symbols to separate the uplink and
downlink training time slots as illustrated in [13]. Hence, one

Fig. 12. Comparison of the DLCB scheme and the Distributed-OTA algorithm
proposed in [28] as the length of orthogonal and non-orthogonal pilots.

training slot for the DLCB scheme contains (14 − 2)/4 =
3 training iterations, each of which occupies 14/3 ≈ 4.67
OFDM symbols. Furthermore, we consider that the scheduling
blocks consist of Nf frames, during which the channels remain
fixed, as discussed in [13]. Accordingly, the effective sum rate
of the DLCB scheme after t iterations is

R
(t)
eff ≜

(
1− 14/6t

10× 8× 14×Nf

)
R(t), (37)

where R(t) is the sum rate after t iterations [cf. (35)-(36)].
Therefore, the overhead ratio of the DLCB scheme, i.e.,
14/3t

1120Nf
, is the same as that of the algorithm from [28].

Incorporating Fig. 11, we can deduce that the average effective
sum rate of the DLCB scheme still outperforms that of the
algorithm from [28].

We also consider a pilot-contaminated scenario by assuming
non-orthogonal random pilots, which can be relevant in a large
network. As shown in Fig. 12, the solid and dotted curves rep-
resent the scenario with ideal orthogonal and non-orthogonal
random pilots, respectively. Fig. 12 shows that the proposed
DLCB scheme is more robust against pilot contamination than
the Distributed-OTA algorithm proposed in [28], whereas the
Distributed-OTA algorithm needs pilot-aided CSI acquisition
for optimizing the MMSE precoding and combining vectors
at both the UEs and the APs. In addition, when the pilot
length is reduced from 128 to 64, the performance of our
algorithm remains almost unchanged. When the length is
reduced to 32, the performance of our algorithm decreases
by less than 9%. Note that the sum rate can slightly decrease
if the pilot length increases over τ = 27. This is because a
lengthy pilot can expand the denominator in (23) and hence
reduce the convergence speed.

We also simulate the special scenario of the single-antenna
UEs. For comparison, we include the “Level 3” method and
the fully centralized “Level 4” method proposed in [18],
which only considers the single-antenna UEs. As shown in
Fig. 13, our proposed DLCB algorithm converges fast and can
outperform the “Level 3” method after very few iterations.
Fig. 14 shows the CDF of the per-UE rate achieved by the
DLCB algorithm, which is better than the Level 3 method
in [18], even though no explicit CSI is required by our scheme
and each AP only needs to pass the scalar sequences to the
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Fig. 13. Comparison of the DLCB algorithm and the Level 4 and Level 3
methods proposed in [18] as the number of iterations.

Fig. 14. CDF of the per-UE rate for the DLCB algorithm and the Level 4 and
Level 3 methods proposed in [18].

CPU over the fronthaul. In contrast, the ‘Level 3” method
in [18] requires each AP to estimate the channel and pass
K-dimensional vector sequences to the CPU. In addition, the
methods in [18] only consider the single-antenna UEs and
assume much statistic information is available at the CPU [18,
Table I]; but our algorithm has no such limitations. Fig. 13
shows as the number of APs L increases, the gap between our
DLCB scheme and the benchmark decreases.

We then simulate a more practical scenario of the time-
varying channel. Specifically, we set that the carrier frequency
fc = 30 GHz, the bandwidth BW = 100 MHz, i.e., the
Nyquist sampling duration Ts = 1

BW = 0.01 µs, and the
channel mobility speed v = 36 km/h, i.e., the Doppler
frequency spread fd = v

c fc = 36/3.6
3×108 × 30 × 109 ≈ 1 kHz.

As shown in Fig. 15, in the initialization stage the DLCB
scheme needs 14 sets of pilots for training that last for 9.1 µs,
i.e., 14×64×0.01+14×0.01 = 9.1 µs [cf. Remark 3] before
transmitting 20 sets of data; based on the first training, the
subsequent training is warm-started, and hence only needs one
iteration for only 0.65 µs followed by another 20 sets of the
data payload. Although the performance of data transmission
slowly degenerates owing to the time-varying channel, it only
needs one iteration of training to compensate for the rate
loss that occurred in the preceding data transmission. To sum

Fig. 15. Average sum rate of the DLCB algorithm in a time-varying channel.

Fig. 16. Average MSE achieved by the DLCB algorithm and the DNN
using local CSI (non-progressive) algorithm proposed in [42] as the number
of iterations.

up, our DLCB algorithms take only a moderate portion of
resources to adapt to the changes of the channels in cell-
free networks. Hence, our algorithms are applicable to static
channels, block-fading channels, and time-varying channels as
well.

The last example simulates the scenario of the Q-output
APs [cf. Remark 2]. We include the “the DNN using local CSI
(non-progressive) algorithm” in [42], which only considers the
real-valued transmission and the single-antenna UEs. Hence,
for comparison we use the real-valued weights and simulate
the scenario of [42], that is, s ∼ N (0, I), Hl ∼ N (0, I),
N = 1, K = 6, L = 3, M = 64, ρ = 0 dB, and 104 channel
realizations. The algorithm of [42] considers the quantization
operation at each AP [cf. (14)-(18) in [42]], which can be
directly incorporated into the DLCB scheme, so we also
simulate the DLCB scheme with the quantization operation for
a fair comparison. The algorithm of [42] uses 105 training data,
whereas our algorithm still uses τ = 64. As shown in Fig. 16,
the DLCB algorithm can outperform the algorithm of [42]
(labeled as “DNN-based”), even though the latter requires the
APs’ local CSI and much more training data.

VI. CONCLUSION

In this paper, we transform the problem of cell-free massive
MIMO optimization to an unconstrained nonlinear one and
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relate an uplink cell-free network to a quasi-neural network.
In doing so, we propose a distributed learning scheme inspired
by backpropagation algorithm, which can optimize the weights
of the UEs, the APs, and the CPU based on a set of
pilot sequences assuming no explicit CSI. The optimization
is conducted via limited OTA signaling and fronthaul sig-
naling, while requiring no information exchanges between
the APs. To support the scheme, we also present a frame
design and provide the complexity and signaling analysis.
It is shown that the scheme needs less fronthaul signaling and
fewer complex-valued multiplications than the state-of-the-art
methods; thus, it is scalable. It is also applicable to various
objective functions, such as the MMSE criterion and the MSR
criterion. The extensive simulations verify the effectiveness of
the proposed scheme.

APPENDIX
PROOF TO PROPOSITION 1

We first reproduce the following lemma from [43].
Lemma 5 [43, Theorem 3.3]: Let f : CN×Q×CN×Q → R.

Then the following holds:

∇Z∗f = (∇Zf)∗ (38)
According to the chain rule of derivative and Lemma 5,

∇vl
f = ∇vl

rl ·
∂f

∂rl
= ∇vl

rl ·
(

∂f

∂r∗l

)∗
. (39)

Since it follows from (3) that ∇vl
rl = yl, (39) can be

reformulated as (11).
According to the chain rule of derivative, we can prove (13)

as

∇uk
f = ∇uk

x∗k · ∇xk
f

(a)
= s∗k · ∇xk

f, (40)

where
(a)
= holds because ∇uk

x∗k = s∗kIN [cf. (1)].
As for ∇xk

f in (13), it is the k-th block of ∇xf in (14).
We can use the chain rule of derivative to obtain (14) as

∇xf =
L∑

l=1

∇xy∗l · ∇yl
f

(b)
=

L∑
l=1

HH
l ∇yl

f
(c)
=

L∑
l=1

HH
l vl

∂f

∂r∗l

(41)

where
(b)
= holds because ∇xy∗l = HH

l [cf. (2)], and
(c)
= holds

because ∇yl
f = ∇yl

r∗l ·
∂f
∂r∗l

= vl
∂f
∂r∗l

, where ∇yl
r∗l = vl

[cf. (3)].
According to our proposed beamforming weight per UE

(uk = pk

∥pk∥e
−θ2

k ,pk ∈ CN , θk ∈ R) and the chain rule of
derivative, we can obtain

∇pk
f = ∇pk

u∗k · ∇uk
f +∇pk

uk · ∇u∗k
f,

and
∂f

∂θk
=

∂uH
k

∂θk
∇uk

f +
∂uT

k

∂θk
∇u∗k

f

=
∂uH

k

∂θk
∇uk

f +
(

∂uH
k

∂θ∗k

)∗
(∇uk

f)∗

= 2Re

{
∂uH

k

∂θk
∇uk

f

}
,

i.e., (15) and (18), where ∇u∗k
f = (∇uk

f)∗ [cf. Lemma 5],
and ∇uk

f has been proven [cf. 13].

As for ∇pk
u∗k, ∇pk

uk in (15) and ∂uH
k

∂θk
in (18), we can use

uk = pk

∥pk∥e
−θ2

k to obtain

∇pk
u∗k =

∂pH
k (pH

k pk)−
1
2 e−θ2

k

∂p∗k

= IN
1

∥pk∥
e−θ2

k − pkpH
k

1
2∥pk∥3

e−θ2
k

=
e−θ2

k

∥pk∥

(
IN − pkpH

k

2∥pk∥2

)
, (42)

∇pk
uk =

∂pT
k (pH

k pk)−
1
2 e−θ2

k

∂p∗k
= − e−θ2

k

2∥pk∥3
pkpT

k , (43)

and

∂uH
k

∂θk
=

∂e−θ2
k

∂θk

pH
k

∥pk∥
= −2θke−θ2

k
pH

k

∥pk∥
, (44)

i.e., (16), (17), and (19).
Inserting (13), (16) and (17) into (15) yields ∂f

∂p∗k
. Inserting

(13) and (19) into (18) leads to ∂f
∂θ∗k

,
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