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Abstract—A relay node can be used to improve the distance
and service quality of a communication link, but not when it
is being interfered. In this paper, we consider a relay network
consisting of one source, one destination, and multiple relay
nodes, and draw analogy between the relay network and a
three-layer artificial neural network (ANN). Inspired by the
classic back-propagation (BP) algorithm for the ANN, we de-
velop an interference-resilient algorithm that can optimize the
beamforming-and-forwarding weights of the relay nodes so that
the interferences will be canceled at the destination. The proposed
algorithm requires no channel state information (CSI), no data
exchanges between the relay nodes; it requires that the source
transmit training sequences in the forward channel (source-
to-relays) and the destination transmit error sequences in the
backward channel (destination-to-relays). The simulation results
verify the effectiveness of the proposed scheme in the interference
environment.

Index Terms—relay communication; backward propagation;
distributed beamforming; interference suppression

I. INTRODUCTION

Relay nodes can be deployed to improve the communication

distance and the end-to-end link quality, especially when they

can cooperate [1]. Several cooperative relay strategies have

been proposed, including the encode-and-forward strategy, the

compress-and-forward strategy [2], and the simpler amplify-

and-forward strategy [3] [4] [5].

This paper studies a relay scheme using the amplify-and-

forward strategy for interference suppression. While the ma-

jority of the existing work on relay communications assume no

interferences (see, e.g., [3] [4]), interferences often exist in the

real scenario. For those works that addresses the interference

issue, the global channel state information (CSI) of the inter-

ferences is usually assumed for relay cooperation [6] [7]. But

this assumption can be impractical, since a) the interferences

are uncoordinated with our nodes, and b) it is difficult for

the interferred relay nodes to exchange information between

themselves.

For the interference-free relay networks, instead of the exact

CSI, the second-order statistic of the CSI can be used for

distributed beamforming [8] [9]. But despite the research on

developing the robust techniques [7] [8] [10], the algorithm
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performance degrades as the uncertainty of the CSI increases

[9].

In this paper, we study a distributed beamforming scheme

for a relay network under interferences, assuming no explicit

CSI but the training sequences transmitted from the source to

the relay nodes. Moreover, we assume that the relay transmis-

sion is subject to the modulation of the nonlinear PA, which

limits the instantaneous amplitude of the transmit signal. This

assumption is more practical than the prevalent assumption of

average power constraint, including the total-power [5] [8] [9]

and the per-relay power constraints [8] [9]. These practical

assumptions apparently render the relay problem even more

challenging.

We tackle this problem via exploiting the multi-aspect

similarity between a relay network and an artificial neural

network (ANN): the nodes are analogous to the neurons in the

ANN; the nonlinearity of a PA is analogous to the nonlinear

activation function of a neuron; the beamforming weights are

analogous to the weight coefficients of the ANN.

Inspired by the classic back-propagation (BP) algorithm for

training an ANN, we develop a distributed relay beamforming

scheme for optimizing a relay network. With the source node

transmitting periodically a training sequence to the relays,

the relay nodes apply beamforming to their received samples

and forward them to the destination. Then the destination

back-propagates an error sequence to the relays so that they

can optimize their beamforming-and-forwarding weights to

minimize the mean square error (MSE) of the destination’s

output. This scheme requires no data exchanges between the

relay nodes.

About using a reverse channel to control the distributed

nodes, the authors of [11] also use a (low rate) reverse control

channel to achieve distributed transmit beamforming. But the

problem considered here is different and more involved other

than that similarity, as we address a relay communication prob-

lem and take into account the interferences and the nonlinearity

of the PAs.

The rest of the paper is structured as follows. Section II

introduces the system model of a relay network and draw

analogy between a relay network and an ANN. Section III

introduces our BP-inspired distributed relay beamforming al-

gorithm and the frame structure designed for supporting the

algorithm. Section IV presents simulation results that verify
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the effectiveness of the proposed scheme for the relay networks

with or without interferences. Section V gives the conclusion.

II. SYSTEM MODEL

A. A Relay Network under Interferences

We consider a relay communication network as illustrated

in Fig.1, which consists of a single-antenna source, an Md-

antenna destination, and N relay nodes each with Mr receiving

antennas and one transmitting antenna.

...

... ...

 Interference 1

 Interference K

Signal Source

Relay 1

Relay N

Destination

Fig. 1: A relay network under interferences.

The relay nodes are subject to K interferences, denoted by

z(i) ∈ C
K . With the signals s(i) being transmitted from the

source, the relay nodes receive

yn(i) = fns(i) +Gnz(i) + ηn(i), for n = 1, . . . , N, (1)

where fn ∈ C
Mr×1 is the channel between the source and

the n-th relay, Gn ∈ C
Mr×K is the channel between the K

interferences and the n-th relay, and ηn ∼ N(0, σ2
ηI) is the

channel noise. There is no direct link between the source and

the destination.

Let the n-th relay node apply beamforming weight vn ∈
C

Mr×1 to obtain

bn , vH
n yn, (2)

where (·)H is the conjugate transpose. Here and in the re-

mainder of this paper, we omit the time index i for notational

simplicity.

When the relay node transmits bn, it will be modulated by

the PA, whose output amplitude as a (nonlinear) function of

the input amplitude is [12, Chapter 3.5]

σ(x) =
x

(1 + x2p)
1

2p

. (3)

The parameter p affects the degree of nonlinearity of the PA,

as shown in Fig.2. The output of the PA with bn being the

input is

an = σ(|bn|)e
jθn (4)

where θn is the phase of bn. With this PA model, the transmit

power per relay node is constrained to be no greater than one.
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Fig. 2: The amplitude of the PA output as a nonlinear function

σ(x) of the amplitude of the input.

To avoid self-interference, the relay nodes receive and

transmit on two different frequencies. The received signal of

the destination node is

r = Ha+ ξ, (5)

where H ∈ C
Md×N is the channel from the N relays to the

destination,

a ,







σ(|b1|)e
jθ1

...

σ(|bN |)ejθN






(6)

contains the transmitted signals of all the relay nodes, and ξ ∼
CN(0, σ2

ξI) is the white Gaussian noise. With the beamforming

weight w ∈ C
Md , the destination obtains the output ŝ = wHr.

Assuming that the source transmits training sequences to

the destination through the relay nodes, this paper focuses on

minimizing the MSE with respect to w and vn’s, i.e.,

min
v1,...,vN ,w

E
∣

∣wHr− s
∣

∣

2
, (7)

where s is the known training signal. To show the dependency

of the MSE on vn’s explicitly, we expand (7) to be

min
v1,...,vN ,w

E

∣

∣

∣

∣

∣

∣

∣

wH











H







σ(|vH
1 y1|)e

jθ1

...

σ(|vH
NyN |)ejθN






+ ξ











− s

∣

∣

∣

∣

∣

∣

∣

2

. (8)

Note that to solve (8) will achieve interference suppression

automatically, since minimizing the MSE amounts to maximiz-

ing the output signal-to-interference-plus-noise ratio (SINR)

according to their relationship [13]

SINR =
1

MSE
− 1. (9)

To solve (8), however, appears challenging, especially when

i) the CSI is not explicitly available,

ii) the nodes, including the relays and the destination, need to
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optimize their own beamforming weights in a distributed

manner, and

iii) there are no communications between the relay nodes.

In the next, we show how to solve (8) with the inspiration

from the neural network theory, which meets all the three

requirements in the above.

B. The Analogy between Relay Network and ANN

Fig.3 shows a three-layer ANN, which is similar to a relay

network in multiple aspects.
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Fig. 3: The topology of a three-layer ANN.

In Fig.3, a
(l)
n represents the output of the n-th neuron of

the l-th layer, which is just like the transmitted signal an [cf.

(4)] from the PA of nth relay node. The input into a neuron

in the l-th layer is a linear combination (with weights ω
(l)
jk )

of the outputs of the neurons in the (l − 1)th layer, which is

analogous to the beamforming operation [cf. (2)]. Just like the

relay nodes having nonlinear PA, the neurons in an ANN have

a nonlinear activation function σ, such as a Rectified Linear

Unit (ReLU) or a Sigmoid function.

The striking similarity between the relay network and an

ANN prompts us to consider optimizing the beamforming

weights of the relays and the destination by using techniques

from the neural network theory. We let the source transmit

a training sequence periodically to the relay nodes, just like

feeding batches of the training samples into the ANN. We then

modify the BP algorithm [14] to optimize the beamforming

weights of the relays and the destination, using a reverse

channel to broadcast an error sequence from the destination to

the relays. It will be detailed in the next section.

Note that in the ANN as shown in Fig. 3, a neuron is only

connected to the ones in the adjacent layers. Consequently,

there is no direct exchanges of information between the

neurons in the same layer. Similarly, our proposed algorithm

will update the beamforming-and-forwarding weights of the

relay nodes using only the received signal from the source and

the feedback from the destination, with no communications

between the peer relay nodes. We will revisit this important

fact later in the next section.

III. THE DISTRIBUTED RELAY BEAMFORMING SCHEME

We develop in the next a distributed relay beamforming

algorithm to solve (8), which can be regarded as a modified

BP algorithm.

A. A Modified BP Algorithm

Denote J , |ŝ − s|2, where ŝ = wHr is the beamforming

output of the destination node. Then the objective function in

(8) is E[J ], and
∂J

∂ŝ∗
= ŝ− s. (10)

The derivative with respect to the output the n-th relay is

∂J

∂a∗n
=

∂|wH(Ha+ ξ)− s|2

∂a∗n

= hH
n w (ŝ− s) , n = 1, 2, ..., N, (11)

where (·)∗ denotes complex conjugation and hn ∈ C
Md is the

n-th column of the channel matrix H, i.e., the channel from

the n-th relay to the destination.

Regarding the PA function (3), the derivatives of its output

with respect to its input in the complex domain are

∂an

∂b∗n
=

∂σ(|bn|)e
jθn

∂b∗n

=
∂σ(|bn|)

∂|bn|

∂|bn|

∂b∗n
ejθn + jσ(|bn|)e

jθn
∂θn

∂b∗n

= −
|an|

2|bn|

|bn|
2p

1 + |bn|2p
ej2θn , (12)

and

∂a∗n
∂b∗n

=
∂σ(|bn|)e

−jθn

∂b∗n

=
∂σ(|bn|)

∂|bn|

∂|bn|

∂b∗n
e−jθn − jσ(|bn|)e

−jθn
∂θn

∂b∗n

=
|an|

2|bn|

(

2−
|bn|

2p

1 + |bn|2p

)

, (13)

where we have used the relationships that

∂|bn|

∂b∗n
=

bn

2|bn|
,

∂θn

∂b∗n
=

j

2b∗n
, (14)

and
∂σ(|bn|)

∂|bn|
=

1− |bn|
2p(1 + |bn|

2p)−1

(1 + |bn|2p)
1

2p

. (15)

Using (11)-(13) and invoking the chain rule, we obtain

∂J

∂b∗n
=

∂J

∂a∗n

∂a∗n
∂b∗n

+
∂J

∂an

∂an

∂b∗n

=
|an|

2|bn|

[(

∂J

∂a∗n

)(

2−
|bn|

2p

1 + |bn|2p

)

−

(

∂J

∂an

)

|bn|
2p

1 + |bn|2p
ej2θn

]

=
|an|

2|bn|

[

(

hH
n w (ŝ− s)

)

(

2−
|bn|

2p

1 + |bn|2p

)

−
(

hH
n w (ŝ− s)

)∗ |bn|
2p

1 + |bn|2p
ej2θn

]

. (16)

It follows from (10) that

∂J

∂w∗
=

(

∂ŝ

∂w∗

)

∂J

∂ŝ
= r [ŝ− s]

∗

. (17)
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It follows from (16) that

∂J

∂v∗

n

=
∂bn

∂v∗

n

(

∂J

∂b∗n

)

∗

= yn

|an|

|2bn|

[(

∂J

∂a∗n

)

∗
(

2−
|bn|

2p

1 + |bn|2p

)

−

(

∂J

∂a∗n

)

|bn|
2p

1 + |bn|2p
e−j2θn

]

= yn

|an|

2|bn|

[

(

hH
n w (ŝ− s)

)∗

(

2−
|bn|

2p

1 + |bn|2p

)

−
(

hH
n w (ŝ− s)

) |bn|
2p

1 + |bn|2p
ej2θn

]

. (18)

Note that (17) and (18) are the gradient directions obtained

for a single training sample. Now with a training sequence of

length L, we can obtain L derivatives, i.e., ∂J
∂vn

(i) and ∂J
∂w

(i),
for i = 1, 2, . . . , L. Using the idea of batch processing in ANN,

we average the L gradient directions to be

dw =
1

L

L
∑

i=1

∂J

∂w
(i), (19)

and

dvn =
1

L

L
∑

i=1

∂J

∂vn

(i). (20)

As the source node transmits training sequences periodically,

we update w and vn’s using the momentum algorithm [14]

to reduce the cost function monotonously. According to the

idea of batch processing, the weights are updated once per

batch. Then the gradient directions at the t-th (t = 1, 2, ..., T )
iteration are

dw(t) = βdw(t− 1) + (1− β)dw(t), (21)

and

dvn
(t) = βdvn(t− 1) + (1− β)dvn(t), (22)

with dw(0) = 0 and dvn(0) = 0. Here the momentum

parameter β ∈ (0, 1). The updated receive beamforming

weights of the destination and the relays are

w(t) = w(t− 1)− αdw(t), (23)

and

vn(t) = vn(t− 1)− αdvn(t), n = 1, . . . , N, (24)

respectively, where α ∈ (0, 1) is the learning rate.

The above gradients can be calculated by the distributed

nodes with a small overhead of information exchange. Accord-

ing to (17), when the destination updates w, only the signals

r, s and ŝ are needed, among which s is the training sequences

known a priori, while both r and ŝ are locally available.

Therefore, the destination can update the weight without any

extra communication overhead.

According to (18), when the n-th relay updates vn, only

hH
n w(ŝ − s) needs to be obtained from external, since yn,

an, and bn are all locally available. If the destination applies

transmit beamforming weight w to the error sequence ŝ − s,

i.e., to broadcasts a vector signal [w(ŝ− s)]
∗

to the relay nodes

through the reverse channel using the time division duplex

(TDD) mode, then the n-th relay receives hT
n [w(ŝ− s)]

∗

.

Thus, each relay will obtain what it needs, i.e., hH
n w(ŝ− s),

subject to some channel noise.

B. A Frame Design Supporting the Modified BP Algorithm

To support the iterative BP algorithm, the frame needs to

include the periodic pilots and the time slots for the back-

propagation transmission. Fig. 4 shows a design which allows

for the T rounds of the forward (source-to-relay) and backward

(destination-to-relay) training sessions, between which the time

gaps are introduced to accommodate the over-the-air propaga-

tion delay and the processing delay. Following the preamble

is the payload, which is omitted from Fig. 4.

Destination-to-relays

 (!),

! = 1,� , "

Source-to- relays

...

t = 1 t = T

[ (!"(#)$ !(#))]%,

# = 1,� , &
...

...

!(#),

# = 1,� , &
[ (!"(#)$ !(#))]%,

# = 1,� , &

Fig. 4: T rounds of time slots for the forward (source-to-relay)

and backward (destination-to-relay) pilot sequences.

In summary, the proposed scheme needs no explicit CSI,

we only assume that the signal source transmits a L-length

training sequence periodically, which is to be detected and

synchronized by the destination. The scheme also needs no

communication between the relays.

The overall scheme is summarized in the below.

Algorithm 1 The Interference-Resilient Relay Scheme

Initialization: w(0) = 0, {vn(0) = 0}Nn=1, α, β,

dw(0) = 0, dvn(0) = 0
Input: T rounds of L-length training sequence s(i), i =

1, 2, ..., L
Output: w,{vn}

N
n=1

1: The destination synchronizes the training sequence.

2: for t = 1, 2, ..., T do

3: The source transmits {s(i)}Li=1.

4: The relays apply beamforming (2), respectively.

5: The destination applies beamforming to obtain

ŝ(i) = w(t)Hr(i), i = 1, . . . , L.

6: The destination transmits {[wn(t)(ŝ(i)− s(i))]∗}Li=1.

7: The relays compute { ∂J
∂w

(i), ∂J
∂vn

(i)}Li=1 according to

(17) and (18).

8: Compute dw by (19) and dvn by (20).

9: Compute dw(t) by (21) and dvn(t) by (22).

10: Update w(t) by (23) and {vn(t)}
N
n=1 by (24).

11: end for
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IV. NUMERICAL SIMULATIONS

In this section, we simulate a relay network as shown in

Fig.1 to verify the effectiveness of the proposed algorithm. The

source-to-relay channel and the relay-to-destination channel

are assumed to be frequency-flat Rayleigh fading and are static

in the simulated time duration. The source transmits a training

sequence of length L = 100 periodically. The SNRs of the

relays (denoted as ρrelay) and the destination node (denoted as

ρdest) are all 20dB. The relays are affected by K interferences,

each is 10dB stronger than the signal. The PA parameter p = 3,

and the moment parameters appeared in (21) and (23) for

updating the beamforming weights are β = 0.9 and α = 0.05.

For all the simulations, we use the output SINR of the des-

tination as the performance metric to evaluate the performance

of the system. The relationship between the output SINR and

the MSE is shown in (9).

In the first example, we simulate the case where all the

relays have only one receiving antenna (Mr = 1) and one

transmitting antenna, and the destination node also has one

receiving antenna (Md = 1). The single-antenna relay nodes

cannot suppress the interferences unless they coordinate to

achieve distributed beamforming. Fig.5 shows, however, that

the relay network can suppress interference effectively thanks

to the distributed relay beamforming using our algorithm, even

though the initialization yields a very low output SINR. About

the x-axis, one iteration represents one round of forward and

backward training session as illustrated in Fig. 4. As expected,

the performance of the algorithm improves as the number of

relays increases.
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Fig. 5: Output SINR of the destination versus the number of

iterations with respect to different number of relay nodes.

In the second example, we set the number of relays N =
4. Fig.6 shows the effect of the number of antennas on each

relay. The output SINR of the relay network increases with

the number of antennas of the relay nodes, which is also as

expected.

In the third example, we assume five single-antenna relays,

i.e., Mr = 1 and N = 5, and that the destination has only
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0
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20

25

S
N

R
(d

B
)

Mr = 1

Mr = 2

Mr = 4

Fig. 6: Output SINR of the destination versus the number

of iterations with respect to different number of receiving

antennas of the relays.

one antenna, i.e., Md = 1. We simulate different number of

interferences against the relays to test the interference suppres-

sion capability of the proposed scheme. Fig.7 shows that the

proposed algorithm can suppress up to 4 interferences. As in

general a five-antenna node can only suppress 4 interference,

this result suggests that the proposed scheme may enable the

distributed relay nodes to coordinate as if they were wire-

connected as a centralized antenna array.
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Fig. 7: Output SINR of the destination versus the number of

iterations with respect to different number of interferences.

Fig.8 compares the performance of our algorithm with the

algorithm in [4] in absence of interference. As the algorithm

in [4] only constrains the average power of the relays, our

power constraint is more stringent. But the performance of

our algorithm is still close to that in [4]. Hence, the proposed

interference-resilient scheme can work in the interference-free

scenario as well. On the other hand, the method in [4] does

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2024 at 13:22:23 UTC from IEEE Xplore.  Restrictions apply. 



not apply to the interference scenario.
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Fig. 8: Comparison between our method with the one in [4]

in the output SINR of the destination for different number of

the relay nodes.

The previous simulation we have assumed that the back-

propagation, i.e., the destination-to-relays channel, is noise-

free. In the final example, we assume when the destination

broadcasts the error sequence [w(ŝ− s)]
∗

, it is affected by

Gaussian noise ζ ∼ N(0, σ2
ζ ) in the reverse channel, the SNR

of the reverse channel is defined as

ρback ,
1

σ2
ζ

, (25)

even though the transmitted error sequence ŝ−s may diminish

as the output SINR increase. Then, the n-th relay obtains

noisy gradients ∂J
∂b∗n

= hH
n w(ŝ − s) + ζ∗. We compare the

performance of our algorithm with or without noise in the

reverse channel in Fig. 9. The curves in both cases almost

overlap even ρback is as low as 0dB. Thus, the proposed

scheme is robust to the noise in the back-propagate channel,

which is because the batch processing of the L samples can

mitigate the impact of the noise owing to the averaging in (19)

and (20).

V. CONCLUSIONS

This paper presents an interference-resilient distributed relay

scheme. By exploiting the striking similarity between the

relay network and a three-layer neural network, we devel-

op a modified back-propagation (BP) algorithm to train the

beamforming-and-forwarding weights of the relay nodes via

having the source transmit a training sequence, and via having

the destination broadcast a beamformed error sequence to

the relay nodes through the reverse channel. The distributed

relay nodes can then achieve cooperative beamforming for

interference suppression without information exchange be-

tween themselves. Simulation results show the effectiveness

of the proposed scheme for a relay network with or without

interferences.
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Fig. 9: Output SINR of the destination versus the number of

iterations with and without noise in the reverse channel.

REFERENCES

[1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE

Transactions on Information Theory, vol. 50, no. 12, pp. 3062–3080,
2004.

[2] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and
capacity theorems for relay networks,” IEEE Transactions on Information

Theory, vol. 51, no. 9, pp. 3037–3063, 2005.
[3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity

- Part I: System description,” IEEE Transactions on Communications,
vol. 51, no. 11, pp. 1927–1938, 2003.

[4] Y. Jing and H. Jafarkhani, “Network beamforming using relays with
perfect channel information,” IEEE Transactions on Information Theory,
vol. 55, no. 6, pp. 2499–2517, 2009.

[5] G. Zheng, K. K. Wong, A. Paulraj, and B. Ottersten, “Collaborative-
relay beamforming with perfect CSI: Optimum and distributed imple-
mentation,” IEEE Signal Processing Letters, vol. 16, no. 4, pp. 257–260,
2009.

[6] L. Dong, A. P. Petropulu, and H. V. Poor, “Weighted cross-layer
cooperative beamforming for wireless networks,” IEEE Transactions on

Signal Processing, vol. 57, no. 8, pp. 3240–3252, 2009.
[7] M. A. Maleki Sadr, M. Ahmadian Attari, and R. Amiri, “Robust relay

beamforming against jamming attack,” IEEE Communications Letters,
vol. 22, no. 2, pp. 312–315, 2018.

[8] J. Li, A. P. Petropulu, and H. V. Poor, “Cooperative transmission for relay
networks based on second-order statistics of channel state information,”
IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 1280–1291,
2011.

[9] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, and Z. Luo, “Distributed
beamforming for relay networks based on second-order statistics of the
channel state information,” IEEE Transactions on Signal Processing,
vol. 56, no. 9, pp. 4306–4316, 2008.

[10] G. Zheng, K. K. Wong, A. Paulraj, and B. Ottersten, “Robust
collaborative-relay beamforming,” IEEE Transactions on Signal Process-

ing, vol. 57, no. 8, pp. 3130–3143, 2010.
[11] R. Mudumbai, J. Hespanha, U. Madhow, and G. Barriac, “Distributed

transmit beamforming using feedback control,” IEEE Transactions on

Information Theory, vol. 56, no. 1, pp. 411–426, 2010.
[12] E. Perahia and R. Stacey, Next generation wireless LANs: 802.11n and

802.11ac. 2013.
[13] D. Guo, “Gaussian channels: Information, estimation and multiuser

detection,” 2004.
[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

Authorized licensed use limited to: Tsinghua University. Downloaded on November 25,2024 at 13:22:23 UTC from IEEE Xplore.  Restrictions apply. 


