Distributed learning for MIMO relay networks

Abstract

This paper studies a multi-antenna multi-user and multi-relay network, where the radio frequency (RF) power amplifiers (PA) of the nodes are subject to instantaneous power constraints. To optimize the nonlinear transceivers of the distributed nodes, we introduce a novel perspective of relating a relay network to an artificial neural network (ANN). With this perspective, we propose a distributed learning-based relay beamforming (DLRB) scheme. Based on a set of pilot sequences, the DLRB scheme can optimize the transceivers to minimize the mean squared error (MSE) of the data stream in a distributed manner. It can effectively coordinate the distributed relay nodes to form a virtual array to suppress interferences, even assuming neither the channel state information (CSI) nor information exchange between the relay nodes or between the users. We also present a frame design to support the DRLB so that it can adapt well with time-varying channels. Extensive simulations verify the effectiveness of the proposed scheme.

Publication
IEEE Journal of Selected Topics in Signal Processing
Rui Wang
Rui Wang
Postdoc

My research interests include efficient learning, AI4Science, wireless communication.